Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Atmosphere ; 14(4):716, 2023.
Article in English | ProQuest Central | ID: covidwho-2297048

ABSTRACT

The risk of COVID-19 infection from virulent aerosols is particularly high indoors. This is especially true for classrooms, which often do not have pre-installed ventilation and are occupied by a large number of students at the same time. It has been found that precautionary measures, such as the use of air purifiers (AP), physical distancing, and the wearing of masks, can reduce the risk of infection. To quantify the actual effect of precautions, it is not possible in experimental studies to expose subjects to virulent aerosols. Therefore, in this study, we develop a computational fluid dynamics (CFD) model to evaluate the impact of applying the aforementioned precautions in classrooms on reducing aerosol concentration and potential exposure in the presence of index or infected patients. A CFD-coupled Wells–Riley model is used to quantify the infection probability (IP) in the presence of index patients. Different cases are simulated by varying the occupancy of the room (half/full), the volumetric flow rate of the AP, two different locations of the AP, and the effect of wearing masks. The results suggest that using an AP reduces the spread of virulent aerosols and thereby reduces the risk of infection. However, the risk of the person sitting adjacent to the index patient is only marginally reduced and can be avoided with the half capacity of the class (physical distancing method) or by wearing face masks of high efficiencies.

2.
Int J Environ Res Public Health ; 18(21)2021 11 02.
Article in English | MEDLINE | ID: covidwho-1502421

ABSTRACT

In the wake of the COVID-19 pandemic, an increased risk of infection by virus-containing aerosols indoors is assumed. Especially in schools, the duration of stay is long and the number of people in the rooms is large, increasing the risk of infection. This problem particularly affects schools without pre-installed ventilation systems that are equipped with filters and/or operate with fresh air. Here, the aerosol concentration is reduced by natural ventilation. In this context, we are investigating the effect of large mobile air purifiers (AP) with HEPA filters on particle concentration and their suitability for classroom use in a primary school in Germany. The three tested APs differ significantly in their air outlet characteristics. Measurements of the number of particles, the particle size distribution, and the CO2 concentration were carried out in the classroom with students (April/May 2021) and with an aerosol generator without students. In this regard, the use of APs leads to a substantial reduction of aerosol particles in the considered particle size range of 0.178-17.78 µm. At the same time, the three APs are found to have differences in their particle decay rate, noise level, and flow velocity. In addition to the measurements, the effect of various influencing parameters on the potential inhaled particle dose was investigated using a calculation model. The parameters considered include the duration of stay, particle concentration in exhaled air, respiratory flow rate, virus lifetime, ventilation interval, ventilation efficiency, AP volumetric flow, as well as room size. Based on the resulting effect diagrams, significant recommendations can be derived for reducing the risk of infection from virus-laden aerosols. Finally, the measurements were compared to computational fluid dynamics (CFD) modeling, as such tools can aid the optimal placement and configuration of APs and can be used to study the effect of the spread of aerosols from a source in the classroom.


Subject(s)
Air Filters , COVID-19 , Aerosols , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL